Mathématiques

Question

Exercice III :
On considère les points A(-2;-1), B (1:3) et C(-3;6) dans un repère orthonormé du plan.
1. Calculer les coordonnées de AB puis la distance AB..
2. Démontrer que ABC est un triangle rectangle isocèle.

Veuillez m’aider s’il vous plaît je ne comprends pas

1 Réponse

  • Réponse :

    1) calculer les coordonnées du vecteur AB, puis la distance AB

    vec(AB) = (1 - (-2) ; 3 - (- 1)) = (3 ; 4) ⇒ AB² = 3²+4² = 9+16 = 25

    ⇒ AB = √25 = 5

    2) démontrer que ABC est un triangle rectangle isocèle

      vec(AC) = (-3+2 ; 6+1) = (- 1 ; 7) ⇒ AC² = (-1)²+ 7² = 50

      vec(BC) = (- 3-1 ; 6-3) = (- 4 ; 3) ⇒ BC² = (-4)² + 3² = 25

    on obtient  AB² = BC² = 25   ⇒ AB = AC  

    en appliquant la réciproque du th.Pythagore

         AB²+ BC² = 25+25 = 50

          AC² = 50

    donc l'égalité est vérifiée  on en déduit d'après la réciproque du th.Pythagore que ABC est rectangle en C

    puisque AB = AC   donc  ABC est un triangle rectangle isocèle en C

    Explications étape par étape

Autres questions