Mathématiques

Question

Bonjour !
j'ai du mal avec cet exercice appartenant au chapitre des fonctions inverse (surtout pour la mise en forme du tableau de signe et de variation)
pouvez vous m'aider à y voir plus clair svp ?

le voici :
f est la fonction définie sur l'intervalle ]-∞;0[ par :
[tex]f(x) = - \frac{1.5}{x} [/tex]

1. Calculer f'(x) pour tout réel x appartenant à ]-∞; 0[.
2. Étudier le signe de f'(x) sur l'intervalle ]-∞; 0[.
3. En déduire le sens de variation de f sur ]-∞;0[.​

1 Réponse

  • Réponse :

    Bonjour c'est le même principe que pour la fonction f(x)=1/x

    Explications étape par étape

    1) Dérivée: f'(x) est de la forme u/v  (forme générale)

    sa dérivée est f'(x)=(u'v-v'u)/v²  (formule à connaître par coeur)  avec

    u=-1,5    donc u'=0

    v=x     v'=1

    f'(x)=[(0*x-(1*(-1,5)]/x²=+1,5/x²

    2)  On note que cette dérivée est toujours >0 par conséquent f(x) est croissante

    Tableau  sur ]-oo; 0[

    x      -oo                                              0

    f'(x).................................+............................

    f(x)  0+...........croissante.................+oo II

    valeurs aux bornes  (limites)

    si x tend vers oo, f(x) tend vers -1,5/-oo=0+

    si x tend vers 0(avec x<0)  f(x tend vers -1,5/0-=+oo

    "II"ce symbole marque   la valeur interdite "0"  et l'axe des ordonnées est une asymptote verticale.

Autres questions