Merci de m’aider ahah ;) *Montrer, dans chaque cas, que les vecteurs u et v sont colinéaires, et déterminer le réel k tel que v=ku . a.u(-10;4) et v(15;-6) b.u(
Mathématiques
anaiscrano2005
Question
Merci de m’aider ahah ;)
*Montrer, dans chaque cas, que les vecteurs u et v sont
colinéaires, et déterminer le réel k tel que v=ku .
a.u(-10;4) et v(15;-6)
b.u(3/2;2) et v (21;28)
*Montrer, dans chaque cas, que les vecteurs u et v sont
colinéaires, et déterminer le réel k tel que v=ku .
a.u(-10;4) et v(15;-6)
b.u(3/2;2) et v (21;28)
1 Réponse
-
1. Réponse Mira1yinda4
Bonjour,
Pour déterminer que des vecteurs soient colineaires, on peut réaliser un tableau et voir s'il est proportiel. En cas de proportionnalité, on va trouver le coefficient de proportionnalité qui sera le réel k et ainsi, on pourra affirmer la colinéarité des vecteurs u et v.
Si cela s'avère être le contraire, on dira que les vecteurs ne sont pas colineaires.
a.u(-10;4) et v(15;-6)
- 10 | 15
4 | -6
15 ÷ -10 = -1,5
- 6 ÷ 4 = - 1,5
Le réel k est donc - 1,5.
v = -1,5 u
Donc les vecteurs sont colineaires.
b.u(3/2;2) et v (21;28)
3 | 21
2,2 | 28
21 ÷ 3 = 7
28 ÷ 2,2 = environ 12
Pas de réel k, donc pas de colinéarité.
Bonne journée ^^