Mathématiques

Question

Bonjour est ce que quelqu'un pourrait m'aider à cet exercice sur les vecteurs/ produit scalaire svp
Bonjour est ce que quelqu'un pourrait m'aider à cet exercice sur les vecteurs/ produit scalaire svp

1 Réponse

  • Réponse :

    bonjour Sur le repère orthtonormé place les points et trace le cercle de diamètre [AB]et la droite y=3

    Explications étape par étape

    vecOA(3; 1)   et vecOB(1; 5)

    OA=rac(3²+1²)=rac10    et OB=rac(1²+5²)=rac26

    Pour déterminer l'angle (vecOA; vecOB) on utilise la formule d'Al Kashi

    AB²=OA²+OB²-2*OA*OB cos (OA;OB)

    donc cos(vecOA;vecOB)=(AB²-OA²-OB²)/(-2*OA*OB)

    AB²=(1-3)²+(5-1)²=20

    remplace et calcule

    ABC est rectangle en A si  vecAC perpendiculaire vecAB donc si le produit scalaire vecAC*vecAB=0

    vecAC(c-3; 2) vecAB(-2; 4)

    il faut donc -2(c-3)+4*2=0

    -2c=-14 doc c=7   C(7;3)

    De même le triangle ABC est rectangle en C si vecAC*vecBC=0

    vecAC (c-3; 2)  et vec BC(c-1; -2)

    il faut résoudre (c-3)*(c-1)-4=0

    soit c²-4c-1=0

    delta=20

    c1=(4-2rac5)/2=2-rac5

    et c2=(4+2rac5)/2=2+rac5

    les point s sont C1(2-rac5; 3) et C2(2+rac5; 3)